

FINAL INTERNATIONAL UNIVERSITY FACULTY OF ENGINEERING

Program Civil Engineering (English)											
Medium	of Instruction		ilist)							
		1 - 19	,	•							
Category	Category Degree		x	Undergraduate	Mast (Proj Bas	Masters (Project Based)		Masters (Thesis)		hesis)	PhD
				CURR	ICULUM						
ABBREV	IATIONS										
UC UE	: University (: University E	Core Elective	Ð	FC: Facul	ty Core			AC: Area AE: Area	a Core a Elec	e tive	
YEAR 1											
FALL											
Comparis	Course			Co	Cours	е		Credit		Pre-	ECTS
Semester	code			Course name	Catego	or	Lec.	Pract.	Tot.	requisite	Credits
1	MATH101	Calcu	ulus	1	FC		4	1	4	-	6
1	PHYS101	Phys	ics		FC		3	2	4	-	6
1	CHEM101	Chen	nist	ry	FC		3	2	4	-	6
1	ENGL101	Engli	sh l		UC		3	0	3	-	6
1	CVIL101	Intro.	to	Civil Eng.	AC		1	0	1	-	2
1	COMP103	Inforr Appli	Information Technology and Applications				2	1	2	-	3
				Total Credit					18		29
SPRING					r			r		1	n
2	MATH102	Calcu	ulus		FC		4	1	4	MATH101	6
2	MATH104	Linea	ar A	lgebra	FC		3	1	3	-	5
2	PHYS102	Phys	ics	<u> </u>	FC		3	2	4	PHYS101	6
2	ENGL102	Engli	sh	<u> </u>			3	0	3	ENGL101	6
2		Engir	nee	ring Drawing	AC		2	2	3	-	4
2	CONPTUG	Com	pute				3	2	4	-	5
									21		32
YEAR 2											
FALL											
3	MATH205	Differ	rent	ial Equations	FC		4	1	4	MATH101 MATH104	6
3	CVIL215	Basic	c Me	echanics - Statics	AC		4	0	4	PHYS101	6
3	CVIL223	Mate	Materials Science				3	1	3	CHEM101	5
3	CVIL237	Geol	ogy	and Surveying	AC		3	2	4	-	6
3	ENGL201	Engli	shi		FC		2	0	2	ENGL102	4
3	GEED-01	Gene	eral	Education Elective-I	UE		3	0	3	-	4
				Total Credit					20		31

SPRING								
4	MATH206	Probability and Statistics	FC	3	1	3	MATH102	5
4	CVIL216	Basic Mechanics - Dynamics	AC	4	0	4	CVIL215	6
4	CVIL224	Materials of Construction	AC	3	2	4	-	6
4	CVIL226	Strength of Materials	AC	4	0	4	CVIL215	6
1	HIST100/	History of Turkish Republic/		2	0	2		2
	TURK100	Turkish as a Second Language	00	2	0	2	-	2
4	GEED-02	General Education Elective-II	UE	3	0	3	-	4
		Total Credit				20		29
YEAR 3								
FALL				0	4			0
5	MATH309	Numerical Analysis	AC	3	1	3	MATH104 MATH205	6
5	CVIL311	Introduction to Structural Mechanics	AC	4	0	4	CVIL226	6
5	CVIL331	Transportation Engineering	AC	3	2	4	CVIL237	6
5	CVIL341	Soil Mechanics	AC	4	2	5	-	6
5	CVIL351	Fluid Mechanics	AC	4	2	5	MATH104	6
		Total Credit				21		30
SPRING								
6	CVIL312	Structural Analysis	AC	3	0	3	CVIL311	6
6	CVIL314	Reinforced Concrete I	AC	4	0	4	CVIL311	6
6	CVIL316	Steel Structures I	AC	4	0	4	CVIL311	6
6	CVIL344	Foundation Engineering	AC	3	0	3	CVIL341	5
6	CVIL352	Hydromechanics	AC	4	2	5	CVIL351	6
6	CVIL398	Summer Training	FC	0	0	0	-	1
		Total Credit				19		30
YEAR 4								
FALL		Facility and a Decision 1	50		4			0
7		Engineering Design I	FC	1	4	3	-	6
7			AC	4	0	4	CVIL314	0
- /		Construction Planning and	AC	4	0	4	CVILSIO	0
7	CVIL461	Cost Estimating	AC	3	0	3	-	5
7	TE-01	Technical Elective	AE	3	0	3	-	7
	Total Credit 17 30							30
SPRING								
8	CVIL402	Engineering Design II	FC	0	8	4	CIVL401	8
8	TE-02	Technical Elective	AE	3	0	3	-	7
8	TE-03	Technical Elective	AE	3	0	3	-	7
8	GEED-03	General Education Elective-III	UE	3	0	3	-	4
8	CVIL404	Engineering Attributes and Ethics	FC	2	0	2	-	3
	Total Credit 15 29							

AREA ELECTIVE COURSES

	Course	Course Name		ECTS		
	Code	Course Name	Lec.	Pract.	Tot.	Credits
1.	CVIL411	Earthquake Engineering	3	0	3	7
2.	CVIL413	Advanced Structural Analysis	3	0	3	7
3.	CVIL431	Public Transportation	3	0	3	7
4.	CVIL433	Highway Materials	3	0	3	7
5.	CVIL441	Deep Foundation	3	0	3	7
6.	CVIL451	Hydraulic Engineering Design	3	0	3	7
7.	CVIL453	Engineering Hydrology	3	0	3	7
8.	CVIL455	Water Supply and Sewerage	3	0	3	7
9.	CVIL457	Coastal and Harbor Engineering	3	0	3	7
10.	CVIL461	Collaborative Working in Construction	3	0	3	7

COURSE BREAKDOWN

					Total				
					Numbe	er	Credit		ECTS Credits
		ŀ	All Cou	rses	45		151		240
	Univer	sity Co	re Coui	rses	5		14		21
	Fac	ulty Co	re Coui	rses	12		41		67
	Area Core Courses						78		118
	Area Elective Courses						9		21
University Elective Courses							9		12
	Summer Internship						0		1
Semester	1	2	3	4	5	6	7	8	Average
Number of courses	6	6	6	6	5	6	5	5	5.6
Total credits	18	21	20	20	21	19	17	15	18.875
Total ECTS Credits	29	32	31	29	30	30	30	29	30

COURSE DESCRIPTIONS / SYNOPSES

1.	Course code: MATH 101	Course title: Calculus I
	Functions, Limits and Continuity, Derivatives, A Integrals, Techniques of Integration, Infinite Se	upplication of the Derivative, Integrals, Applications of quences and Series.
	Text book: Thomas' Calculus, 13th Edition, George Pearson, 2016.	e B. Thomas, Maurice D. Weir, Joel R. Hass, Published by

2.	Course code: PHYS 101	Course title: Physics I
	Measurement, Vectors, Motion in 2D and 3D, F Energy, Conservation of Energy, Center of Mas	Force and Motion, Kinetic Energy and Work, Potential ss, Rotation, Equilibrium and Elasticity, Gravitation.
	Textbook: Principles of Physics, 10 th Edition, J	earl Walker et al. WILEY 2014

3.	Course code: CHEM 101	Course title: Chemistry
	Atoms molecules and ions; mass relations in C	hemistry; stoichiometry. Gases, the ideal gas law, partial
	pressures, mole fractions, kinetic theory of gase	es. Electronic structure and the periodic table.
	Thermochemistry, calorimetry, enthalpy, The F	irst Law of Thermodynamics. Liquids and Solids.
	Solutions. Acids and Bases. Organic Chemistry	A Basic concepts of engineering. Introduction of courses
	and meeting with department staff. Visiting the	institutions working in the scope of computer
	engineering.	

4.	Course code: ENGL101	Course title: English I
	This is a first-semester EAP course for freshma	an students, and it focuses on developing both receptive
	and productive skills as well as the study skills	required for university-level coursework.

5.	Course code: CVIL101	Course title: Introduction to Civil Engineering
	Civil Engineering History. Introduction to Civil E	ngineering. Program information and Branches of Civil
	Engineering. Professional fields in which Civil E	ngineers perform. Professionalism, values, attributes
	and ethics for Civil Engineers. Academic integr	ity and ethical issues in academia and research.
	Engineering Activity: Spaghetti Bridge Competi	tion.

6. Course code: COMP 103 Course title: Information Technology and Applications This course aims to introduce all students to the basic concepts of information technology and to train them in the skills needed to use the office productivity tools. The aim is to learn to apply these skills in their freshman year and to be able to continue to use these skills during their undergraduate studies as well as professional lives after graduation.

7.	Course code: MATH 102	Course title: Calculus II				
	Complex numbers. Vectors in the plane and sp	ace. Vector calculus. Line, plane and curves in the				
	space. Limit and continuity in functions with several variables. Partial and directional derivatives.					
	Tangent plane. Maximum and minimum values. Multiple integrals. Cylindrical and spherical coordinat planes. Coordinate transformations. Green Theorem. Surface integrals. Gauss and Stokes theorems.					
	Textbook: Calculus, Thomas- Finney, Addisor	-Wesley, 1998.				

 8.
 Course code: MATH 104
 Course title: Linear Algebra

 Matrices, determinant. System of a linear equations. Vector spaces. Base and dimension. Linear transformations. Base transformation. Inverse of a linear transformation. Characteristic equations, eigenvalues and eigenvectors and Jordan form. Numerical techniques for calculation of eigenvalues and eigenvectors. Inner product spaces, diagonality, quadratic forms. Norm of a vector space.

 Textbook:
 Steven, J. Leon, "Linear Algebra with Applications", Prentice Hall, 1998.

9.	Course code: PHYS 102	Course title: Physics II				
	Charge, electrical field and Gauss's Law. Basic	c circuits and Kirchhoff's Laws. Magnetic field. Ampere's				
	Law. Faraday's Laws. Resistance, Magnetic pr	operties of the material. Maxwell equations.				
	Electromagnetic waves and introduction to mod	dern physics.				
	Ŭ					
	Textbook: Physics for Scientist and Engineering	ng, 5th Ed., Serway-Beichner.				
	,					
10.	Course code: ENGL102	Course title: English II				
	This course is continuation of ENGL 101- Engli	ish L It involves further development of students' FAP				
	oral and written communication skills as well as	s further development of the study skills essential to				
	success at this level.					
11	Course code: CVII 102	Course title: Engineering Drawing				
	This course provides an overview of the CAD s	oftware used in civil engineering. Students learn the				
	hasic skills to originate and edit drawings. Arch	itoctural Drawings, Drawing Instruments, Types of lines				
	and line quality	inectural Drawings. Drawing instruments. Types of lines				
10	Course and a COMP 100	Course titles Computer Brogramming				
12.		Course title: Computer Programming				
	Review of the C programming language. Struct	tured and modular programming using C. Local and				
	global variables. Structured programming cons	tructs. Arrays and array handling. Multi-dimensional				
	arrays. Structures and Unions. Arrays of struct	ures. Defining new data types in C. Functions in C. Call-				
	by-value and call-by-reference. Character and	string functions. Scope and extent. Recursion. Pointers				
	and pointer arithmetic. Dynamic memory alloca	ation and simple data structures in C. Arrays of pointers.				
	Bit manipulation. Files; data and file processing	g. Conditional compilation and exception handling in C.				
	Textbook: Deitel & Deitel, C How to Program,	8th Ed., Prentice Hall, 2016.				
13.	Course code: MATH 205	Course title: Differential Equations				
	Classification of differential equations. Solving	methods of first order differential equations. Linear				
	differential equations of higher degrees. Metho	d of undetermined coefficients. Laplace transformation				
	and convolution. Differential equations with sev	veral variables.				
	Textbook: Elementary Differential Equations a	nd Boundary Value Problems, William E. Boyce –				
	Richard C. Diprima, John-Wiley, 1992.					
	• • • • • • • • • • • • • • • • • • •					
14.	Course code: MATH 206	Course title: Probability and Statistics				
	Probability concept and basic theorems. Indepe	endency, conditional probability and Bayes' rule.				
	Random variables and functions. Some import	ant discrete and continuous distributions. Distribution of				
	random variable functions. Statistics. Unit mas	s data analysis. Sampling and sampling methods				
15	Course code: C\/II 215	Course title: Basic Mechanics-Statics				
10.	Basic Definitions Concents and Principles Sta	tics of Particles Resultant of forces in space Equilibrium				
	and free-hody concent Statics of Pigid Radias	Moments Countes and Equivalent force systems				
	Fand nee-body concept. Statics of Rigid Doules.	Antroide Contor of grovity and Moment of inertic				
	Definition of Determinanty of structures, and we	s of statically determinate structures, trucase, beem				
	frames and arches	s of statically determinate structures, trusses, beam,				
	names and arcnes.					
40		Course title. Motoricle of Ociones				
10.		Course title: Materials of Science				
	Fundamentals of materials. Behavior of materia	als under stress. Particulate composites.				
r						
17.	Course code: CVIL237	Course title: Geology and Surveying				
	Introduction, Distance Measurement. Taping. L	inear surveying principles and mapping. Level. Methods				
	and principles of leveling. Applications of leveli	ng. Errors and adjustment. Traverse computations,				
	Tachometry, Coordinates. Equipment. Areas a	nd volumes of irregular shapes.				

18.	Course code: ENGL201	Course title: English III
	This second year English course helps develop the	ne academic language skills required to write, format,
	and reference a short professional or technical re	port, and to present a summary of its contents to a
	public audience.	
	1	
19.	Course code: CVIL224	Course title: Materials of Construction
	Production, Types, Usages in Construction, Prop	erties and related tests for different materials.
	Properties of fresh and hardened concrete. Conc	rete mix design calculations. Bricks, Building Stones,
	Plasters, Steel, Timber and Polymers.	
20.	Course code: CVIL226	ourse title: Strength of Materials
	Covers the relationship between stress and strain	on deformable solids. elastic and elastic-plastic
	benavior. Internal forces and moments in beams	and their diagrams. Stresses in beams. Torsion.
	Deflection of beams, buckling of columns. Energy	/ Methods.
21.	Course code: MATH 309	Course title: Numerical Analysis
	Approximate calculation and error concept. Soluti	ion of nonlinear equations. Approximate root finding
	methods: sequential repeating method, sloping m	hethod. Newton-Raphson method. Bairstow method.
	Numeric integration methods. Finite differences.	Numeric derivatives. Euler method, Taylor method.
	Textbook: S. C.Chapra. R. P.Canale Numerical	methods for Engineers with Software and
	Programming applications, 2002	3
22.	Course code: CVIL216	Course title: Basic Mechanics - Dynamics
	Basic fundamentals of particle and rigid body dyn	amics; energy and momentum methods. Newton's
	equations of motion.	
23a.	a. Course code: HIST100 C	Course title: History of Turkish Republic
	This course is designed to provide Turkish-spea	aking students enrolled in English-medium programs
	with a brief historical account of the Republic of	Turkey.
23b	b. Course code: TURK100 C	Course title: Turkish as a Second Language
	This course is designed to provide international	students with the basic lexis and grammar of the
	Turkish language and to develop basic receptive	e and productive skills in Turkish.
24.	Course code: GEED-01 / 02 / 03	Course title: General Education Elective-I / II / III
	Courses in the General Education classification w	vill be available for students to take as an elective non-
	technical course. The topics will be balanced betw	ween Humanities, Arts and Social Sciences. Approved
	courses will be announced at the start of each se	mester by the Faculty of Engineering. One of the
	courses must be among Introduction to Economic	cs, Business/Engineering Management/Management
	or Accounting-I courses.	
25		Course title: Tropoportation Engineering
23.	Transportation Madae Vahiale and Livman Char	pourse une: mansponation Engineering
	Design Devemente Traffic Flave Listers Organ	actenstics. Venicle Motion. Signt Distance. Geometric
	Design. Pavements. Traffic Flow. Highway Capac	sity.
26	Course code: CVII 351	Course title: Fluid Mechanics
	Understand the definition of a fluid Understand the	ne concents of viscosity surface tension caternillar
	the difference of Newtonian and non-Newtonian f	luids. Inderstand the assumptions for ideal flow

the difference of Newtonian and non-Newtonian fluids, Understand the assumptions for ideal flow, Understand the difference between laminar and turbulent flow and the transition between them, and know how to determine these flow regimes. Able to calculate hydrostatic pressure on a plate or curved surface and locate the center of pressure. Understand the principles of manometer and know about its applications. Bernoulli Equation. Dimensional analysis. Buckingham PI Theorem.

21.	Course code: CVIL341	Course title: Soil Mechanics	
	Introduction to physical properties of minerals	. Geologic time scale. Rock cycle. Soil compaction.	
	Effective stress concept. Permeability and its	measurement. Seepage. One and two dimensional flow	
	condition. Flow nets. Stresses in a soil mass.	Consolidation process. Immediate and consolidation	
	settlement. Terzaghi's theory of one-dimensional consolidation. Degree of consolidation. Shear strength		
	of soils. Lateral earth pressure theories. Stability of retaining walls. Slope stability.		
		, · · · · · · · · · · · · · · · · · · ·	
28.	Course code: CVIL311	Course title: Introduction to Structural Mechanics	
	Modeling of structures. Unsymmetrical bendin	d. Shear center, Determinacy, indeterminacy and stability.	
	Virtual work Deformation and deflected shape	es Force method of analysis Plastic behavior of structural	
	members		
29	Course code: CVII 352	Course title: Hydromechanics	
20.	Laminar and turbulent flows Friction factor in	nine flow. Computation of flow in single nines: Hydraulic	
	machinery: turbines and numps. Pipeline syst	ome and notworks. Conoral characteristics and	
	clossification of anon channel flow process	ents and networks. General characteristics and	
	ciassification of open charmer now. pressure a	and velocity distribution. Continuity equation. Energy	
	concept. Momentum principle. Uniform now. F	rapidly varied now gradually-varied now. Design of	
	nonerodible and erodible channels.		
30	Course code: CVII 344	Course title: Foundation Engineering	
50.	Introduction: Geotechnical properties of soils	Stress Distribution in Soils Site Investigation Sattlement	
	of Structures, Rearing Capacity of Soils, Desir	oness Distribution in Sons, She investigation, Settlement	
	Exervations, Dearing Capacity of Solis, Desig	Joe Costophical Forthqueke Engineering	
	Excavations, Pile Foundations and types of pi	ies, Geolechnical Eannquake Engineening.	
	0 (1) (1) (1) (1)		
31.	Course code: CVIL312	Course title: Structural Analysis	
	Introduction to structural analysis. Work and e	energy principles and their application in deformation	
	analysis of structures. Analysis of Statically In	determinate Structures by the Force Method and	
	Displacement-based methods: Slope Deflection	on, Moment Distribution, Stiffness Method. derivation of	
	element stiffness matrices, assembly procedu	ires. Introduction to computer applications.	
20		Course titles Deinforced Concrete I	
32.	Course code: CVIL314	Course title: Reinforced Concrete I	
	Mechanical behavior of concrete in uniaxial ar	nd multiaxial states of stress. Time dependent behavior of	
	concrete. Mechanical behavior of reinforcing s	steel. Behavior and strength of uniaxially loaded members;	
	confinement. Behavior and strength of members in pure bending. Behavior and strength of members		
	under combined bending and axial load. Behavior and strength of members under combined shear and		
	under combined bending and axial load. Beha	avior and strength of members under combined shear and	
	under combined bending and axial load. Beha bending.	avior and strength of members under combined shear and	
	under combined bending and axial load. Beha bending.	avior and strength of members under combined shear and	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316	avior and strength of members under combined shear and Course title: Steel Structures I	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such	avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability.	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability.	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training	
32. 33.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro-	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The	
32. 33.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco Department/Faculty. Registration of summer to	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco Department/Faculty. Registration of summer to the training.	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco Department/Faculty. Registration of summer to the training.	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension ams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following	
32.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco Department/Faculty. Registration of summer to the training.	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following Course title: Technical Elective	
32. 33. 34.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco Department/Faculty. Registration of summer to the training. Course code: TE-01-02-03 This is a Technical Elective course which will	Course title: Steel Structures I as design methods, behavior of steel structures, tension aams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following Course title: Technical Elective be selected by students in their senior year and is offered	
32. 33. 34.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in accor Department/Faculty. Registration of summer to the training. Course code: TE-01-02-03 This is a Technical Elective course which will by the department alternatively during the Faller	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the training is done during the semester immediately following Course title: Technical Elective be selected by students in their senior year and is offered and Spring semesters. Please see the Technical Elective	
32. 33. 34.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in accor Department/Faculty. Registration of summer to the training. Course code: TE-01-02-03 This is a Technical Elective course which will by the department alternatively during the Fal- courses list	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension eams and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following Course title: Technical Elective be selected by students in their senior year and is offered I and Spring semesters. Please see the Technical Elective	
32. 33. 34.	under combined bending and axial load. Beha bending. Course code: CVIL316 Basic concepts in steel structure design such and compression members, codes, safety. Be Course code: CVIL398 In partial fulfillment of the graduation requirem training after the end of the second and/or (pro- summer training should be carried out in acco Department/Faculty. Registration of summer to the training. Course code: TE-01-02-03 This is a Technical Elective course which will by the department alternatively during the Fal- courses list.	Avior and strength of members under combined shear and Course title: Steel Structures I as design methods, behavior of steel structures, tension as and beam-columns, connections, serviceability. Course title: Summer Training nents, all students must complete 40 work days of summer eferably) third year, during summer vacations. The ordance with the rules and regulations set by the raining is done during the semester immediately following Course title: Technical Elective be selected by students in their senior year and is offered I and Spring semesters. Please see the Technical Elective	

35.	Course code: CVIL461	Course title: Construction Planning and Cost
		Estimating
	Economical and juridical basis of construction planning. Methods of planning. Gantt charts, cyclogrammes, networks. (CPM and PERT) Arrow and precedence systems. Resource leveling and time-cost trade-offs. Probabilistic and deterministic networks. Computer applications of construction	
	planning process by using available softwares. project.	Quantity measurement and cost estimating of a building

36.	Course code: CVIL415	Course title: Reinforce Concrete II
	General RC behavior: Moment-curvature relationship; plastic hinge, redistribution. Behavior and	
	strength of members under combined shear and torsion: Equilibrium torsion, compatibility torsion,	
	punching, capacity design. Repair/Strengthening Principles: Column, beam, slab repair, structural	
	system improvement. Seismic design principles	s. Serviceability. Detailing. Computer aided design.

37.	Course code: CVIL417	Course title: Steel Structures II
	Principles of Plastic Design, Load and Resistance Factor Design, Tapered Columns, Tapered Beams,	
	Torsion, Introduction to Plate Girders, Beam to Column Connections, Roof Trusses, Introduction to	
	Industrial Building design, Light Gage Cold formed members.	

38. Course code: CVIL401
 Course title: Engineering Design I
 Engineering Design is an important activity that each engineering student must carry out and go through the phases of the design process. Engineering design is expected to be carried out by students within teams under the supervision of an instructor. It is desired that each project be an interdisciplinary capstone design project. The project is spread to one academic year and it involves the courses CVIL401 and CVIL402. CVIL401 includes the initial problem formulation, a technical survey, the detailed problem study, analysis and description, as well as formulation of a methodical way for the initial solution. A detailed preliminary design documentation for the solution of a realistic and reasonably complex computer engineering problem. It is an extended exercise in the professional application of the skills and experience gained in the undergraduate program. Students form teams, and each team chooses a topic proposed by course instructors. Students are expected to present their progress in the form of reports and presentation, both during the semester and at the end of the semester.

38.	Course code: CVIL402	Course title: Engineering Design II
	This course is the sequel to CVIL401. It consists of the implementation of a realistic, preferably	
	interdisciplinary, engineering capstone design project emphasizing engineering design principles on an	
	electrical and electronic engineering topic. It is carried out by a team of students under the supervision	
	of an instructor. The team must complete the detailed design and implementation of the preliminary	
	design they started in the CVIL401 course. It is an extended exercise in the professional application of	
	the knowledge, experience and skills gained in	the undergraduate program. The team has to complete
	analysis, design, implementation, testing and d	ocumentation of a proto-type or actual engineered
	product, present it and submit a final report in t	he technical project report format.

39.	Course code: CVIL404	Course title: Engineering Attributes and Ethics
	This is a final year course which aims to provide knowledge and awareness of a number of important	
	engineering issues. The knowledge areas include but are not limited to: professionalism, ethics, project	
	management, sustainable development, risk management, change management, standards, health,	
	environment, hazards, workplace health and se	ecurity, societal issues as well as contemporary issues
	reflecting on the applications of the engineering	g profession. Awareness areas include but are not limited
	to entrepreneurship, innovation and the legal ra	amifications of the engineering solutions.