

ELEC 211

COMP 215

ELEC 231

ENGL201

3

3

3

3

Program

FINAL INTERNATIONAL UNIVERSITY FACULTY OF ENGINEERING

Catego	ry Asso	ociate gree	X	Undergraduate	Maste (Project B	ers Based)		Ma (Th	sters esis)	PhD
				CURRI	CULUM					
ABBRE	VIATIONS									
t t	J C: University J E: University	Core Elective	;	FC: Faculty	y Core		AC: A AE: A	area Co rea Elo	ore ective	
YEAR 1										
FALL							~			
Semeste	Course code			Course name	Course	Lec	Credit Pract	Tot	Pre-	ECTS Credite
1	MATH 101	Calcul	lus 1		FC	4	1	4	-	6
1	PHYS 101	Physic	cs 1		FC	3	2	4	-	6
1	CHEM 101	Chemi	istry		FC	3	2	4	-	6
1	ELEC 100	Introd Inform	uctionation	on to Electrical & n Engineering	AC	2	2	3	-	3
1	COMP 103	Inform Applic	natio catio	n Technology and ns	UC	2	1	2	-	3
1	ENGL101	Englis	h I		UC	3	0	3	-	6
				Total Credit				20		30
SPRING										
2	MATH 102	Calcul	lus I	[FC	4	1	4	MATH101	6
2	MATH 104	Linear	Alg	gebra	FC	3	1	3	-	5
2	PHYS 102	Physic	es II		FC	3	2	4	PHYS 101	6
2	COMP 104	Comp	uter	Programming	UC	3	2	4	-	6
2	ENGL102	Englis	h II		UC	3	0	3	ENGL101	6
				Total Credit				18		29
YEAR 2										
FALL										
3	MATH 205	Differ	entia	ll Equations	FC	4	1	4	MATH101 MATH104	6
3	MATH 207	Engine	eerir	ng Mathematics	AC	3	1	3	MATH102 MATH104	6

Electrical and Electronic Engineering

SPRING	Ŧ							
4	MATH 206	Probability and Statistics	FC	3	1	3	MATH102	5
4	ELEC 232	Circuit Theory II	AC	3	2	4	ELEC231	6
4	ELEC 242	Semiconductor Devices	AC	3	0	3	CHEM101	6
4	ELEC 252	Electromagnetics I	AC	4	0	4	MATH102 PHYS102	6
4	GEED-01	General Education Elective-I	UE	3	0	3	-	4
4	HIST100/ TURK100	History of Turkish Republic/ Turkish as a Second Language	UC	2	0	2	-	2
		Total Credit				19		29
YEAR 3	5							
FALL								
5	ELEC 311	Microprocessors	AC	3	2	4	ELEC211	6
5	ELEC 331	Signals & Systems	AC	3	0	3	MATH207	6
5	ELEC 341	Electronics I	AC	3	2	4	ELEC232 ELEC242	6
5	ELEC 351	Electromagnetics II	AC	3	0	3	ELEC252	6
5	GEED-02	General Education Elective-II	UE	3	0	3	-	4
		Total Credit				17		28
SPRING	F							
6	ELEC 322	Data Communication and Computer Networks	AC	3	2	4	COMP215	6
6	ELEC 332	Control Systems	AC	3	0	3	ELEC331	6
6	ELEC 342	Electronics II	AC	3	2	4	ELEC341	6
6	ELEC 362	Communication Systems	AC	3	0	3	ELEC331	6
6	ELEC 371	Electrical Machines and Energy	AC	3	0	3	ELEC252	6
Total Credit 17							30	
YEAR 4	l i							
FALL								
7	ELEC 401	Engineering Design I	FC	1	4	3	-	6
7	ELEC 403	Summer Training	FC	0	0	0	-	1
7	ELEC 431	Digital Signal Processing	AC	3	0	3	ELEC331	6
7	TE-01	Technical Elective	AE	3	0	3	-	7
7	TE-02	Technical Elective	AE	3	0	3	-	7
7	GEED-03	General Education Elective-III	UE	3	0	3	-	4
		Total Credit				15		31
SPRING	ŕ			1		1		
8	ELEC 402	Engineering Design II	FC	0	8	4	ELEC401	8
8	ELEC 404	Engineering Attributes and Ethics	FC	2	0	2	-	3
8	TE-03	Technical Elective	AE	3	0	3	-	7
0 0	1E-04 GEED 04	General Education Elective IV	AE	3	0	2	-	<u>/</u> Л
0	ULLD-04	Total Credit	UL	5	U	15	-	29
1								

Course	Course Name		Credit		ECTS
Code	Course Name	Lec.	Pract.	Tot.	Credits
ELEC421	Advanced Computer Networks	3	0	3	7
ELEC422	Information Management	3	0	3	7
ELEC423	Client-Server Computing	3	0	3	7
ELEC424	Computer Simulation	3	0	3	7
ELEC425	Computing Systems	3	0	3	7
ELEC426	Embedded Systems	3	0	3	7
ELEC427	Real-Time Systems	3	0	3	7
ELEC432	Advanced Control Systems	3	0	3	7
ELEC433	Industrial Control	3	0	3	7
ELEC434	Digital Control Systems	3	0	3	7
ELEC435	Introduction to Robotics	3	0	3	7
ELEC441	Industrial Electronics	3	0	3	7
ELEC442	Power Electronics	3	0	3	7
ELEC443	Opto-electronics	3	0	3	7
ELEC451	Microwave Theory	3	0	3	7
ELEC452	Microwave Applications	3	0	3	7
ELEC461	Communication Systems II	3	0	3	7
ELEC462	Wireless Communications	3	0	3	7
ELEC463	Information Theory	3	0	3	7
ELEC471	High Voltage Techniques	3	0	3	7
ELEC472	Power Generation and Distribution	3	0	3	7
ELEC473	Power Systems Analysis	3	0	3	7

AREA ELECTIVE COURSES

COURSE BREAKDOWN

					Total				
	Numbe	er	Credit		ECTS Credits				
		A	All Cou	rses	44		142		240
	Univer	sity Co	re Cou	rses	5 14			23	
	Fac	ulty Co	re Cou	rses	12		41		68
	Area Core Courses				18	18 63			104
	Area Elective Courses				4		12		28
Uni	University Elective Courses				4		12		16
	Summer Internship				1		0		1
	Total			otal	44		142		240
Semester	1	2	3	4	5	6	7	8	Average
Number of courses	6	5	6	6	5	5	6	5	5.5
Total credits	20	18	21	19	17	17	15	15	17.75
Total ECTS Credits	30	29	34	29	28	30	31	29	30

	COURSE DESCRIPTIONS / SYNOPSES			
1.	Course code: MATH 101	Course title: Calculus I		
	Functions, limit, continuity and derivative. Mean V integrals. Logarithmic, exponential, hyperbolic and techniques. Area, volume and rotational surface ar Power and Taylor series. Text book: Thomas' Calculus, 13th Edition, Georg Pearson, 2016.	Value Theorem and applications. Definite and indefinite d inverse trigonometric functions. L'Hopital's Rule. Integration ea calculation. Applications in physics. Sequences and series. ge B. Thomas, Maurice D. Weir, Joel R. Hass, Published by		
2.	Course code: PHYS 101	Course title: Physics 1		
	Measurement standards and units, vectors and coo conservation of energy, systems of particles, collis Textbook: Sears & Zemansky's University Physic Freedman, Pearson Education Limited, 2016.	rdinate systems, dynamics, work, energy and power, ions, rotation, equilibrium of solids, oscillations, gravity. cs with Modern Physics. 14 th Ed., Hugh D. Young, Roger A.		
3.	Course code: CHEM 101	Course title: Chemistry		
	mole fractions, kinetic theory of gases. Electronic enthalpy, The First Law of Thermodynamics. Liqu Textbook: General Chemistry, Principles and Mod Education Ltd., 2017.	structure and the periodic table. Thermochemistry, calorimetry, nids and Solids. Solutions. Acids and Bases. Organic Chemistry. dern Applications, 11th Ed., Petrucci R.H., et.al., Pearson		
4.	Course code: ELEC 100	Course title: Introduction to Electrical & Information Engineering		
	Introduction to Electrical and Electronic Engin Professionalism, values, attributes and ethics for E and research. Program information and areas of sp computer organization, hardware and software, op networks. Introduction to algorithms and program solving and algorithm development. The C progra input/output, structured programming; sequence, s Textbook: Computers Are Your Future Complete, Secondary Textbook: C How to Program, 8 th Ed.	heering. Professional fields in which EE engineers perform. EE engineers. Academic integrity and ethical issues in academia becialisation. Introduction to fundamentals of computer systems; berating systems, language processors, user interfaces, computer mming; machine, assembly and high level languages. Problem imming language. Arithmetic and logical statements, data types, election and iteration; control structures. , C. Laberta, 12 th Ed., Pearson Education Ltd., 2014. , Deitel & Deitel, Prentice Hall, 2016.		
5.	Course code: COMP 103	Course title: Information Technology and Applications		
	This course aims to introduce all students to the bas skills needed to use the office productivity tools. T and to be able to continue to use these skills during graduation.	sic concepts of information technology and to train them in the 'he aim is to learn to apply these skills in their freshman year g their undergraduate studies as well as professional lives after		
6.	Course code: ENGL101	Course title: English I		

This is a first-semester EAP course for freshman students, and it focuses on developing both receptive and productive skills as well as the study skills required for university-level coursework.

7.	Course code: MATH 102	Course title: Calculus II
	Complex numbers. Vectors in the plane and space.	Vector calculus. Line, plane and curves in the space. Limit and
	continuity in functions with several variables. Partia	l and directional derivatives. Tangent plane. Maximum and
	minimum values. Multiple integrals. Cylindrical and	l spherical coordinate planes. Coordinate transformations.
	Green Theorem. Surface integrals. Gauss and Stoke	s theorems.
	Textbook: Calculus, Thomas- Finney, Addison-We	sley, 1998.

8.	Course code: MATH 104	Course title: Linear Algebra
	Matrices, determinant. System of a linear equations.	Vector spaces. Base and dimension. Linear transformations.
	Base transformation. Inverse of a linear transformat	ion. Characteristic equations, eigenvalues and eigenvectors
	and Jordan form. Numerical techniques for calculati	on of eigenvalues and eigenvectors. Inner product spaces,

diagonality, quadratic forms. Norm of a vector space. **Textbook:** Steven, J. Leon, "Linear Algebra with Applications", Prentice Hall, 1998.

9.	Course code: PHYS 102	Course title: Physics II				
	Charge, electrical field and Gauss's Law. Basic circ	cuits and Kirchhoff's Laws. Magnetic field. Ampere's Law.				
	Faraday's Laws. Resistance, Magnetic properties of	f the material. Maxwell equations. Electromagnetic waves and				
	introduction to modern physics.					
	Textbook: Physics for Scientist and Engineering, 5	Ed., Serway-Beichner.				
40	Course and a COMP 104	Course titles Computer Drogramming				
10.	Course code: COMP 104	Course title: Computer Programming				
	variables. Structured programming constructs. Ar	rave and array handling. Multi dimensional arrays. Structures				
	and Unions. Arrays of structures. Defining new data types in C. Functions in C. Call-by-value and call-by-					
	reference. Character and string functions. Scope and extent. Recursion. Pointers and pointer arithmetic. Dynamic					
	memory allocation and simple data structures in C. Arrays of pointers. Bit manipulation. Files; data and file					
	processing. Conditional compilation and exception handling in C.					
	Textbook: Deitel & Deitel, C How to Program, 8 th	Ed., Prentice Hall, 2016.				
11.	Course code: ENGL102	Course title: English II				
	This course is continuation of ENGL 101- English	I. It involves further development of students' EAP oral and				
	written communication skills as well as further deve	elopment of the study skills essential to success at this level.				
12	Course code: MATH 205	Course title: Differential Equations				
12.	Classification of differential equations Solving m	ethods of first order differential equations Linear differential				
	equations of higher degrees. Method of undeter	mined coefficients. Laplace transformation and convolution.				
	Differential equations with several variables.					
	Textbook: Elementary Differential Equations and I	Boundary Value Problems, William E. Boyce – Richard C.				
	Diprima, John-Wiley, 1992.					
13.	Course code: MATH 207	Course title: Engineering Mathematics				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity.				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities Residue theorem Numerical error So	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated plution of nonlinear equations. Convergence. Solution of linear Is Interpolation Curve fitting Numerical differentiation and				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration.	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated plution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration.	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated plution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration.	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated plution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated plution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits.				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circ	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. reuits.				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. In equations. Line integrals. Cauchy integral formula. Isolated plution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. Course title: Digital Logic Design				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated blution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSL MSL and LSL elements.	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated blution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. rcuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of ents. Synchronous sequential logic: flip-flops, counters shift				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI eleme registers. Analysis and design of sequential circuit	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated blution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. reuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of nts. Synchronous sequential logic; flip-flops, counters, shift cuits, state tables, state diagrams, state reduction and state				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI eleme registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. recuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of ents. Synchronous sequential logic; flip-flops, counters, shift cuits, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI elemen registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs).	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated blution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. rcuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of ets, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple				
13.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. H Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI eleme registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs). computing architecture.	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated bution of nonlinear equations. Convergence. Solution of linear Is. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. reuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of nts. Synchronous sequential logic; flip-flops, counters, shift cuits, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI eleme registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs). computing architecture. Textbook: Digital Design, 5 th Ed., M. Morris Man	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. recuts. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of ets, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple o and Michael D. Ciletti, Prentice Hall, 2013.				
13. 14. 15.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI eleme registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs). computing architecture. Textbook: Digital Design, 5 th Ed., M. Morris Man	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear Is. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. reuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of nts. Synchronous sequential logic; flip-flops, counters, shift cuits, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple o and Michael D. Ciletti, Prentice Hall, 2013.				
13. 14. 15. 16.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI eleme registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs). computing architecture. Textbook: Digital Design, 5 th Ed., M. Morris Man	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear Is. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. reuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of nts. Synchronous sequential logic; flip-flops, counters, shift cuits, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple o and Michael D. Ciletti, Prentice Hall, 2013.				
13. 14. 15. 16.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI element registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs). computing architecture. Textbook: Digital Design, 5 th Ed., M. Morris Man Course code: COMP 215 Data structures and their usage. Programming metime analysis. Stacks and curves. Linked lists and set	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear Is. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. rcuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of nts. Synchronous sequential logic; flip-flops, counters, shift cuits, state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple o and Michael D. Ciletti, Prentice Hall, 2013. Course title: Algorithms and Data Structures thods, sorting, searching algorithms and applications, storage, polications. Recursion. Trees and tree searching algorithms				
13. 14. 15. 16.	Course code: MATH 207 Complex numbers. Algebra of complex numbers. F Analyticity and analytic functions. Cauchy-Rieman singularities. Residue theorem. Numerical error. So systems of equations: direct and iterative method integration. Course code: ELEC 231 Circuit variables, circuit elements. Simple resistiv analysis. Inductance and capacitance. State variable Natural and step responses of second-order RLC circuit Course code: ELEC 211 Binary Systems. Boolean algebra and logic gates. combinational circuits. SSI, MSI and LSI elemen registers. Analysis and design of sequential circuit assignment. Sequential MSI elements. Large scale elements and programmable logic devices (PLDs). computing architecture. Textbook: Digital Design, 5 th Ed., M. Morris Man Course code: COMP 215 Data structures and their usage. Programming met time analysis. Stacks and queues. Linked lists and a Textbook: Algorithms in C (Vol. 1) Sederwick 3:	Course title: Engineering Mathematics Polar representation. Complex functions. Limits and continuity. an equations. Line integrals. Cauchy integral formula. Isolated polution of nonlinear equations. Convergence. Solution of linear ls. Interpolation. Curve fitting. Numerical differentiation and Course title: Circuit Theory I e circuits. Techniques of circuit analysis. Topology in circuit es and state equations. Response of first-order RL, RC circuits. reuits. Course title: Digital Logic Design Simplification of Boolean functions. Analysis and design of ets. state tables, state diagrams, state reduction and state e system design with MSI. Timing issues. Registers, memory FSMs and FSMD; datapath and control. Relationship to simple o and Michael D. Ciletti, Prentice Hall, 2013. Course title: Algorithms and Data Structures thods, sorting, searching algorithms and applications, storage, pplications. Recursion. Trees and tree searching algorithms.				

17. Course code: ENGL201

 This second year English course helps develop the academic language skills required to write, format, and reference a short professional or technical report, and to present a summary of its contents to a public audience.

 18. Course code: MATH 206
 Course title: Probability and Statistics

 Probability concept and basic theorems. Independency, conditional probability and Bayes' rule. Random variables and functions. Some important discrete and continuous distributions. Distribution of random variable functions.

Statistics. Unit, mass, data analysis. Sampling and sampling methods.

19.	Course code: ELEC 232	Course title: Circuit Theory II		
	Sinusoidal Sources and Phasors. AC Steady-State Analysis. AC Steady-State Power. Three-Phase Circuits. The			
	Laplace Transforms. Circuit Analysis in the s-domain. Frequency Response. Mutual Inductance and Transformers.			
	Two-port Circuits.			

20.	Course code: ELEC 252	Course title: Electromagnetics I
	Review of vector calculus. Electrostatics in vac	uum. Coulomb's and Gauss's laws. Electrostatic potential.
	Poisson's and Laplace's equations. Conductors	in the presence of electrostatic fields. Method of images.
	Dielectrics; polarization. Dielectric boundary condition	tions. Capacitance. Electrostatic energy. Electrostatic forces by
	the virtual work principle. Steady currents. Ohm's	and Joule's laws. Resistance calculations. Magnetostatics in
	vacuum. Ampere's force law. Biot-Savart law. M	Magnetic vector potential. Ampere's circuital law. Magnetic
	boundary conditions. Magnetic dipole. Magnetizat	ion. Hysteresis curve. Self and mutual inductance. Magnetic
	stored energy. Magnetic forces by the virtual work	principle.

21.	Course code: ELEC 242	Course title: Semiconductor Devices
	Crystal structures, energy levels in crystals. Electr	onic transport in metals; superconductivity. Semiconductors;
	impurities; carrier transport in semiconductors; g	eneration and recombination of minority carriers. The P-N
	junction diode and Schottky diode; diode characteri	stics and circuits. The bipolar junction transistor (BJT); current
	flow in diodes, BJTs and MOSFETs. Integrated circ	cuits. Inverters. TTL, MOS, ECL structures. Logic Gates. Flip-
	flops. Bistable, astable and monostable multivibrato	rs.

22. Course code: GEED-01 / 02 / 03 / 04 Course title: General Education Elective-I/ II/ III/ IV Courses in the General Education classification will be available for students to take as an elective non-technical course. The topics will be balanced between Humanities, Arts and Social Sciences. Approved courses will be announced at the start of each semester by the Faculty of Engineering. One of the courses must be among Introduction to Economics, Business/Engineering Management/Management or Accounting-I courses.

23a.	Course code: HIST100	Course title: History of Turkish Republic		
	This course is designed to provide Turkish-speaking students enrolled in English-medium programs with a brief			
	historical account of the Republic of Turkey.			

23b.	Course code: TURK100	Course title: Turkish as a Second Language
	This course is designed to provide international st	udents with the basic lexis and grammar of the Turkish
	language and to develop basic receptive and prod	uctive skills in Turkish.

24.	Course code: ELEC 341	Course title: Electronics I
	Feedback amplifiers. Applications of operationa	al amplifiers. Active filters. Logarithmic and exponential
	amplifiers. Analog multipliers. Comparators and	the Schmitt trigger. Voltage-controlled oscillators. Multi-
	vibrators. Data conversion circuits. Sinusoidal oscill	ators.

25.	Course code: ELEC 331	Course title: Signals and Systems
	Continuous-time and discrete-time signals and syste	ms. Linear time-invariant (LTI) systems: system properties,
	convolution sum and the convolution integral repres	entation, system properties, LTI systems described by
	differential and difference equations. Fourier series:	Representation of periodic continuous-time and discrete-time
	signals and filtering. Continuous time Fourier transf	form and its properties: Time and frequency shifting,
	conjugation, differentiation and integration, scaling,	convolution, and the Parseval's relation. Representation of
	aperiodic signals and the Discrete-time Fourier trans	sform. Properties of the discrete-time Fourier transform.

26. Course code: ELEC 311

Course title: Microprocessors

Systems based on microprocessors and their design, software and hardware design integration. Memories, input/output elements, interrupts and priorities. Daisy chaining type of processors. Lines, connections, timing, usage of logic state analyzers. Control programming, permanent programs in the memory and programming. Synchronous multi-tasking usage and system design.

27.	Course code: ELEC 351	Course title: Electromagnetics II
	Electromagnetic induction; Faraday's and Lenz's	aws; transformer and motional electromotive force; induction
	heating; displacement current; time-varying fields;	Maxwell's equations; wave equations; time-harmonic fields;
	complex phasors; scalar and vector potential func-	tions; plane waves in vacuum; plane waves in dielectrics and
	conductors; polarization; skin effect; electromagn	netic energy and power; Poynting's theorem; reflection and
	refraction of plane waves at dielectric interfaces;	Snell's laws; Fresnel formulas; critical angle; total internal
	reflection; total transmission; Brewster's angle;	standing waves; transmission line theory; TEM waves;
	transmission line parameters; lossy and lossless line	es; matching of transmission lines to their loads.

28.	Course code: GEED-02	Course title: General Education Elective-II
	See GEED-01 course description.	

29.	Course code: ELEC 342	Course title: Electronics II
	Feedback amplifiers. Applications of operational an	plifiers. Active filters. Logarithmic and exponential
	amplifiers. Analog multipliers. Comparators and the	Schmitt trigger. Voltage-Controlled-Oscillators.
	Multivibrators. Data conversion circuits. Sinusoidal	oscillators.

30.	Course code: ELEC 362	Course title: Communication Systems
	Review of Fourier transform and its properties. The	cansmission of signals through linear systems. Power spectral
	density and autocorrelation function. The sampling	g theorem and the Nyquist rate, aliasing distortion. Non-ideal
	sampling: Pulse amplitude modulation (PAM) and	flat-top PAM and equalization. Digital signaling: quantization,
	encoding and pulse code modulation (PCM), 1	ine codes and their spectra, regenerative repeaters. Pulse
	transmission: Intersymbol interference (ISI), Nyqu	uist method for zero ISI, time division multiplexing (TDM),
	pulse-time modulation techniques. Complex enve	lope representation of bandpass and modulated signals. RF
	circuits: limiters, converters, multipliers, detectors	, PLL circuits and etc. Analog modulation techniques: AM,
	DSB-SC, SSB etc. Binary modulation techniques: A	ASK, BPSK, FSK.

31.Course code: ELEC 332Course title: Control SystemsIntroduction to control: open-loop and closed loop control. Modelling: transfer function, block diagram, signal
flow graph, state equations. Feedback control system characteristics: sensitivity, disturbance rejection, steady-state
error. Performance specifications: second-order system, dominant roots, steady-state error of feedback systems.
Stability: Routh-Hurwitz criterion, relative stability. The root locus method. Frequency response methods: Bode
diagram, performance in the frequency domain, Nyquist stability criterion, gain margin and phase margin, Nichols
chart.

32.	Course code: ELEC 322	Course title: Data Communication and Computer
		Networks
	Principles of data communications; information t	ransfer, computer networks and their applications. Network
	structures architectures and protocols. Open syste	ms and the ISO-OSI reference model services and network

structures, architectures and protocols. Open systems and the ISO-OSI reference model; services and network standardization. Communication systems: transmission media, analog and digital transmission. PSTN, modems, PCM, encoding and digital interface. Transmission and switching: FDM, TDM, modulation, circuit, packet and message switching. The store and forward concept. Networking characteristics. Storage, delay, multiplexing, bandwidth sharing and dynamic bandwidth management, QoS. Channel organization, framing, channel access control. PSPDN and integrated digital network concept: ISDN. LANs, MANs and WANs. ATM and gigabit networking. Communication models. De-facto standards. The Internet open architecture and the protocol suite. Modern applications of networking.

Textbook: Stallings W., Data and Computer Communications", 8th Ed., Prentice-Hall, 2007. **Reading:** Tanenbaum, A.S., "Computer Networks", 4th Ed., Prentice Hall Publ., 201.

33.	Course code: ELEC 371	Course title: Electrical Machines and Energy
	Transient analysis of ac and dc machines an	id transformers; Single-phase induction motors; Stepper motors;
	Brushless dc motors; Shaded-pole motors;	Universal motors; Speed control using Programmable Logic

Controllers; Condition monitoring using Labview graphical programming.

34.	Course code: ELEC 401	Course title: Engineering Design I
	Engineering Design is an important activity that	each engineering student must carry out and go through the
	phases of the design process. Engineering design is	expected to be carried out by students within teams under the
	supervision of an instructor. It is desired that each	n project be an interdisciplinary capstone design project. The
	project is spread to one academic year and it involve	es the courses ELEC401 and ELEC402. ELEC401 includes the
	initial problem formulation, a technical survey, the	e detailed problem study, analysis and description, as well as
	formulation of a methodical way for the initial so	blution. A detailed preliminary design documentation for the
	solution of a realistic and reasonably complex con	nputer engineering problem. It is an extended exercise in the
	professional application of the skills and experience	e gained in the undergraduate program. Students form teams,
	and each team chooses a topic proposed by course	instructors. Students are expected to present their progress in
	the form of reports and presentation, both during the	e semester and at the end of the semester.

35.	Course code: ELEC 431	Course title: Digital Signal Processing
	Overview of digital signals and systems. Free	juency and time representation of sampling, decimation,
	interpolation. Z-transform: Evaluation, region of	convergence (ROC) and properties. Discrete time system
	structures: tapped delay line and lattice structures	. Fast Fourier Transform (FFT). Digital filter design: Finite
	impulse response (FIR), infinite impulse response (I	IR), windowing, Hilbert transform.

36.	Course code: TE-01	Course title: Technical Elective
	This is a Technical Elective course which will be se	lected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.

37.	Course code: TE-02	Course title: Technical Elective
	This is a Technical Elective course which will be se	lected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.
38.	Course code: GEED-03	Course title: General Education Elective-III
	See GEED-01 course description.	

38.	Course code: GEED-03	Course title: General Education Elective-III
	See GEED-01 course description.	

Course code: ELEC 403 39. Course title: Summer Training In partial fulfillment of the graduation requirements, all students must complete 40 work days of summer training after the end of the second and/or (preferably) third year, during summer vacations. The summer training should be carried out in accordance with the rules and regulations set by the Department/Faculty. Registration of summer training is done during the semester immediately following the training.

40.	Course code: ELEC 402	Course title: Engineering Design II
	This course is the sequel to ELEC401. It consists of	f the implementation of a realistic, preferably interdisciplinary,
	engineering capstone design project emphasizing	engineering design principles on an electrical and electronic
	engineering topic. It is carried out by a team of st	udents under the supervision of an instructor. The team must
	complete the detailed design and implementation of	the preliminary design they started in the ELEC401 course. It
	is an extended exercise in the professional applic	ation of the knowledge, experience and skills gained in the
	undergraduate program. The team has to complete a	analysis, design, implementation, testing and documentation of
	a proto-type or actual engineered product, presen	t it and submit a final report in the technical project report
	format.	

41.	Course code: TE-03	Course title: Technical Elective
	This is a Technical Elective course which will be se	lected by students in their senior year and is offered by the
	department alternatively during the Fall and Spring	semesters. Please see the Technical Elective courses list.

Υ <u></u>	Jourse code: TE-04	Course title: Lechnical Elective
T	This is a Technical Elective course which will be selected by students in their senior year and is offered by the	
de	lepartment alternatively during the Fall and Spring s	semesters. Please see the Technical Elective courses list.

43. Course code: GEED-04 Course title: General Education Elective-IV	
--	--

See GEED-01 course description.

44.	Course code: ELEC 404	Course title: Engineering Attributes and Ethics
	This is a final year course which aims to provide kr	owledge and awareness of a number of important engineering
	issues. The knowledge areas include but are n	ot limited to: professionalism, ethics, project management,
	sustainable development, risk management, char	nge management, standards, health, environment, hazards,
	workplace health and security, societal issues as we	ell as contemporary issues reflecting on the applications of the
	engineering profession. Awareness areas include bu	t are not limited to entrepreneurship, innovation and the legal
	ramifications of the engineering solutions.	